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Dynamic Modeling and Cooperative 
Control of a Redundant Manipulator Based on 

Decomposition 
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This paper demonstrates the use of a redundant manipulator to execute multiple tasks 

specified at different points on the manipulator. This is accomplished by decomposing a 

redundant arm at an intermediate arm location, called "elbow", into two non redundant local 

arms, referred to as the "basearm" and the forearm. This decomposition transforms a redundant 

arm into a "serially linked dual-arm system," where the cooperation between the basearm and 

the forearm is carried out through the task distribution and the elbow control. To distribute a 

given task to individual local arms according to their dynamic capabilities, the Cartesian space 

model of a serially linked dual-arm system is derived using Lagrangian mechanics. The 

Cartesian space dynamic model enables us to quantify the dynamic capabilities of individual 

arms based on two hyper ellipsoids : the Cartesian Force Ellipsoid (C. F. E) representing the 

range of Cartesian forces due to the unit norm of joint torques, and Cartesian Acceleration 

Ellipsoid (C. A. E) representing the range of Cartesian accelerations due to the unit norm 

of Cartesian forces. In addition to the local dynamic characteristics, the global task require- 

ments such as singularity avoidance, jo in t ' t o rque  limit avoidance, motion generation effi- 

ciency, and accurate motion control, are improved by elbow control. Elbow control can also 

be used to execute a subtask at the elbow, ['or example, obstacle avoidance. 

Key Words : Redundant Manipulator, Decomposition, Dynamic Capabilities, Task Distribu- 

tion 

1. Introduction 

In recent designs of robotic manipulators, a 

number of extra joints are added to provide 

dexterity and versatility as well as a large work- 

space for the manipulator (Chang, 1986 ; Holler- 

bach and Sub, 1987 ; Lunde et al., 1987 ; Sharon 

et al., 1988 ; Book, 1985 ; Maciejewski and 

Klein, 1985). With redundancy, there exists multi- 

ple sets of joint motions which correspond to a 

desired Cartesian motion (task). The problem of 

resolving the redundancy is equivalent to the 
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problem of finding the optimal set of joint 

motions which generates the desired Cartesian 

motion. Many methods have been developed for 

the utilization of redundancy. Most researchers 

have used the generalized inverse of lhe Jacobian 

matrix with a general performance function as a 

central tool in redundancy resolution (Lee and 

Lee, 1988, 1990 ; Yoshikawa, ; Hollerbach and 

Suh, 1987 ; Lunde et al., 1987 ; Maciejewski and 

Klein, 1985 ; Nakamura and Hanafusa, 1987 ; Li 

and Satry, 1988), or they have defined an 

extended Jacobian to obtain the corresponding 

joint velocities. 

In a previous paper (Lee and Lee, 1990), we 

handled this redundancy resolution problem by 

treating a redundant manipulator as two serially 

linked manipulators, each being non-redundant  
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and defined by a predetermined intermediate 

point. The paper has shown (1) how the task at 

the HAND (end-effector of the forearm) and the 

task at the ELBOW (end-effector of the basearm) 

can be achieved simultaneously, and (2) how the 

basearrn (B-ARM) can cooperate with the fore- 

arm (F'-ARM) for the task at the HAND. This 

scheme provides a generalized concept of macro/ 

micro manipulator system (Sharon et al.. 1988). 

That is, while there are two permanent local 

manipulators in the macro/micro manipulator 

system, according to our scheme, the pre-deter- 

mined intermediate point divides a redundant 

manipulator into two local arms dynamically. 

The scheme is both promising and elegant in 

terms of the kinematic control of a redundant 

manipulator. However, since the task is represent- 

ed in terms of Cartesian velocities, the dynamic 

characteristics of each local arm have not been 

considered in achieving the task specified at the 

hand efficiently. 

In this paper, we present a new concept of 

redundancy resolution in the Cartesian accelera- 

tion domain for a decomposed-redundant manip- 

ulator. First, we model a decomposed redundant 

manipulator as the equivalent kinetic energy and 

potential energy matrices of the two local arms, 

an F-ARM and a B-ARM, in Cartesian space. 

The dynamic equations of the redundant manipu- 

lator are derived by using this dynamic model, in 

which the interacting force between the local arms 

-an  inherent term in the serially linked manipula- 

tor system-is explicitly represented. Based on 

these dynamic equations, the task (represented in 

terms of the Cartesian acceleration) is distributed 

to each local arm according to each arm's 

dynamic characteristics. With the local optimal 

task dislribution, the configuration of the 

decomposed-redundant manipulator  can be 

optimized at the beginning of each task segment 

by elbow control (Lee and Lee, 1990) to satisfy 

the global task requirements. 

2. Preliminary 

2.1 Kinematics of a decomposed-redundant 
manipulator 

Figure l(a) illustrates a decomposed-redun- 

dant arm represented as a serially linked manipu- 

lator system composed of a B-ARM and a F 

-ARM. The basic frames involved in the system 

are designated as follows : 

BASE : the base frame of the system or equiva- 

lently, the base frame of the B-ARM ; 

ELBOW : the end frame of B-ARM or equiva- 

lently, the base fiame of the F-ARM ; 

HAND : the end-effector frame of F-ARM. 

Let us first represent the joint velocity vector of a 

(a) A serially linked manipulator (b) Cartesian model 
Fig. 1 Dynamic model of a decomposed redundant manipulator 
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redundant arm, 0 ~ R  ~, as the combination of the 

joint  velocity vector of the B-ARM, g)b~R ~ and 

the F ARM, 0 1 ~ R  s as follows : 

The elbow motion, i 'h  generated by the B-ARM 

can be described with reference to BASE by using 

the Jacobian of the B-ARM, ~ : 
0 0 

Xl F /)1] [ ] V ] [ 0 0 ]  ( 0  ' = = ]I go) (2) 
LO(01J kOj~z,J 

where ~ I and ~ respectivly represent the linear 

and angular velocities of ELBOW in Cartesian 

space with respect to BASE. 

Similarly, the hand motion, 1i.2, generated by 

the F - A R M  can be described with respect to 

ELBOW by using the Jacobian of the F ARM, 

1J2 : 
1 1 

1 ", __ 2 = J~ [ Of]. (3) 
t(0 2 

Based on (1-3), the hand motion, a ~ / ~  m, with 

respect to BASE can be expressed in terms of 0o 

and OF as follows : 
0 0 . . . 

[ /"] = [ ]~Ob--OJl:~247 ll]'~{)f] 
. i ' :  0(0 L oj~oOb§ f J 

~ & + ~ OF (4a) 
0 
E UI § ~ )< P § ~ (4b) 

~ § ~ ~ J 

e i ' l  § i '2 (4c) 
0 

[ [0 
f ~ , _ p o f ~ ]  o l v 

where OJb 
L oj~ j ,  JF LOR?j~ ], 
o 

0 ~ a!'~, P is the position vector 

from ELBOW to HAND, }5~R3• is the cross 

product operator of p (i. e., p = p •  ~ the 

rotational transformation matrix from BASE to 

ELBOW, and T is a 3 / 3  identity matrix. (4c) 

indicates that the hand velocity can be represent- 

ed explicitly in terms of the Cartesian velocities of 

B ARM and F ARM. 

Consequently, the hand acceleration, 2 ,  with 

reference to BASE can be derived by taking the 

time derivatives of both sides of (4b) : 

0 

[ 0 j  
0 

: [  {) 1 § ~ 1X P § ~ )~/5 @ ~ 2 @ ~ )~ ~ u2] 

0 (.01 IL 0/I)l 1 (2)2 -- 0 W 1 X ~ J 
0 0 

[ ;  (]D@0/)2) X ] [  /)1] @ [ : - P ) ~ ] [  ~1 ] 

--0(02 X J L~ T JL~ 
o 

+[ (5) 
L~ 

where /5=~215 p § 1 7 6  2, d = E ~  - ( t S + 0 v 2 ) x ] ,  
- -~  

o o 

~Z'l= 0(/)1' 'Z'2=[00)2]' ~176 

and 0 0 1 (02= Rt (02. 

2.2 Kinematic coordination and dynamic 

control 

The dynamic control of a redundant manipula- 

tor with more than one redundant degree of free- 

dom is not suitable for real-t ime implementation 

without an efficient computational scheme. Treat- 

ing a redundant manipulator as two serially lin- 

ked non-redundant  manipulators reduces the 

computational cost considerably (Tzafestas et al., 

1988 : Horak, 1984). In Horak's algorithm 

(Tzafestas et al., 1988), the evaluation of velocity 

and acceleration at the base of the F ARM is 

needed. Instead of the evaluated motion, the 

optimal motion can be obtained through the 

kinematic resolution of redundancy (Lee and 

Lee, 1990). As shown in (4a), a~ can be expressed 

explicitly in terms of 0b and 0I. Therefore, the 

desired task, :/'d, can be distributed to each arm 

according to its kinematic characteristics re- 

presented by an actual manipulabil i ty ellipsoid 

(defined by ~ and ~ respectively for each arm) 

and the task requirements represented by a desir- 

ed manipulabil i ty ellipsoid (Lee and Lee, 1988). 

Through this task distribution, an optimal motion 

at the base of the F - A R M  can be determined. 

With the predetermined motion trajectories of the 

base and the end effector of the F - A R M ,  the 

dynamic equations of the F - A R M  can be directly 

derived by the Newton-Euler  method. The 

dynamic equations of the B ARM can also be 

derived by either the Lagrangian or Newton 



Dynamic Modefing and Cooperative Control off a Redundant... 645 

-Euler method with the incorporation of the 

effecl of the F-ARM in the form of an external 

force/moment at the ELBOW. 

The dynamic equations of the virtually isolated 

local manipulators are represented in joint space 

as follows : 

r , ,o=A,,(&) 0"b +B~(0,,, 0,,) (6a) 

rs0=As(0~) 0 ) + B s ( 0 f ,  d.r) (6b) 

where A, /3, and r represent the inertia matrix, 

the Coriolis, centrifugal and gravity forces, and 

the generalized force in joint space, respectively, 

with b and i referring to the B ARM and the F 

-ARM. 

When the arms are serially linked together, the 

dynamic equations of the local arms can be 

derived in parallel by using each other's 

kinematic and dynamic characteristics. With the 

predetermined .fib and ,fl, the torque of the F 

-ARM, rj,, for the generation of local motion, ck~ 

and ~:> can be calculated based on the classical 

Newton-Euler dynamic equations. Through the 

process of computing z:r, the reactive force, Fe, 

which is transmitted to the B-ARM as the exter- 

nal force, can be calculated. Therefore, the torque 

of the B-ARM can be computed in parallel with 

the torque of the F -ARM as follows : 

rb = rbo + ~ (7) 

where Ieu can be obtained by the Newlon-Euler 
i" 0 method, and ~ is defined by , ' 1  J10~,. Note 

that rb0 can be calculated in parallel with FR 

since rb0 is the joint torque of B-ARM without 

the F ARM. F~-~ in Fig. 1 represents the external 

force at the HAND. 

3. Dynamic Model of a Serially Lin- 
ked Manipulator 

Dynamic control in real time is very difficult 

on account of the complex dynamics of redundant 

manipulators. The computational bottleneck of 

man:y advanced control schemes is the algorithm 

for the computation of the actuator torques which 

are required to produce desired joint accelera- 

tions for a given set of joint velocities and angles. 

The decomposition of a redundant manipulator 

may produce a considerable reduction in the 

computational cost. However, complex dynamic 

interactions exist between the local arms, which 

need to be analyzed to accomplish dynamic coor- 

dination of the local arms. 

3.1 Cartesian space dynamic model 
To derive the dynamic equations of a 

decomposed-redundant manipulator, we model 

each local manipulator in Cartesian space as an 

equivalent kinetic energ.r matrix, A,  and an 

equivalent potential energ.v malri:c, AP, with a 

corresponding Cartesian force veci'or, F .  

The dynamic equations of a manipulator der- 

ived in joint space, r - A 0 " + s  0) ,  are 

converted into Cartesian space as 

t 7 - A 2 ~  V(a', :/:) (8) 

where A -  (JA-~J r) -~ and 1/is the: vector of end 

-effector centrifugal, Coriolis and gravity forces. 

"l-he conversion is accomplished in keeping with 

the fact that the kinetic energy of the system is the 

same, whether it is derived in joint space or in 

Cartesian space (Khatib, 1987) This efJbctive 

kinetic energy matrix represents the relation 

between the Cartesian acceleration and the gener- 

alized (_'artesian force where the number of joints 

is equal to the dimension of the task spaceJ 

However, in handling the two local arms each of 

which has a number of joints less than the dimen- 

sion of the task space, the effective kinetic energy 

matrix is not suitable. Here, we derive a more 

general form of the effective kinetic energy matrix, 

renamed as an equivalent kinetic energy matrix. 

and also derive an equivalent potential energy 

matrix, both of which can be defined regardless 

of the number of the joints. 

Transformation of the Kinetic Energy Matrix 

The equivalent kinetic energy matrix, A, for a p 

(1)<6) degrees of freedom manipulator can be 

obtained through the following process. 

The equivalence property of the kinetic energy 

in joint space and in Cartesian space is represent- 

ed as 

~More precisely speaking, when the realizable 
Cartesian velocity subspace(Lee and Lee, 1990) 
is equal to the task space, 
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~~A~ OrAd (9) 

where d?mxl=JmxpOpxl, A = J r A J ,  and p <  m = 6 .  

Through the SVD, Jm• is represented as 

01,~• Gr• (10) 

where S E = d i a g ~  ... ~1. 
Substituting (10) into Eq., A = J r A ] ,  we have 

A = VSEU[A UESE V T (1 I -a) 

0 =  U~A U,,, ( 1 l -b)  

Therefore, the equivalent kinetic energy matrix A 

can be defined as 
[ 

[ SEU~ 0 
0 P0~ A 

(12) 

Transformation of the Potential Energy Matrix 

The equivalent potential energy matrix, Ae, for 

a multi-body system at the end-effector can be 

obtained by transforming the potential energy of 

each link to the end-effector : 

P 

U-- 52 x?H~,q 
i--1 

=:z'rApg (13) 

where we take g =  [0, 0, 9.Sm/s", 0, 0, 0] r 

Therefore, to satisfy the above relation (13), 

the equivalent potential energy matrix at the end 

effector is defined as follows : 

P 

Ap -- ~, dicey[x,. ( I ) / x  (1) x, (2 ) /x  (2) --. 
i - - I  

x i ( m ) / x ( m ) l  r Hi (14) 

where x ( m )  represents the mth element of the 

position/orientation vector, x. Note that x (3) is 

the only essential variable such that unless x (3) 

=0,  Ap can be determined. 

Through these equivalent energy matrices, the 

kinetic energy and the potential energy of each 

link is equivalently transformed to the end-el- 

lector of the manipulator. As a result, a manipula- 

tor is modeled as an equivalent kinetic energy 

matrix and an equivalent potential energy matrix 

at the end-effector with an ideal force source as 

shown in Fig. l (b) .  

3.2 Dynamic equations of a decomposed 
-redundant manipulator 

With the definition of the Cartesian dynamic 

model, a decomposed-redundant manipulator 

(refer to Fig. 1 (b)) can be characterized by the 

equivalent kinetic energy matrices, A1 and A2, 

and the equivalent potential energy matrices, AP1 
and AP2 : 

Kinetic energy of B ARM : Tl:-l/2i.fA~jcl 
Potential energy of B ARM : V~=xfAmg 
Kinetic energy of F-ARM : Te=I/2i.  TAa:~ 
Potential energy of F ARM : V~=xrAP2g. 

Note that the F-ARM generates the motion :cz 

and 5::2 with respect to its base (ELBOW) and 
that the actual motion at the end-effector of F 

-ARM (HAND),  a? and 5(, is the aggregation of 

the motions of both the B ARM and the F-ARM, 

as shown in Fig. l (a) .  Note also that two in- 

dependent parameters, d,'l and d:> form a com- 

plete set of velocity parameters of the decomposed 

redundant manipulator in Cartesian space and 

thus constitute a system of generalized coordi- 

nates for the decomposed redundant manipula- 

tor. 

To derive the dynamic equations of the 

decomposed-redundant manipulator, we define 

the Lagrangian function L as : 

L = T  V 
: [/2i, rAli, l+ [ /2d ~ rA2J7 -2&rAplg 
-xrAp2g (15) 

where T and V are the manipulator kinetic 

energy and potential energy, respectively. 

The Lagrangian equations of motion for this 

decomposed-redundant manipulator are 

F ~ = d / d t ( ~ L l )  8L 
8xl 

=d/d t (A~i ' l+  ( 8~ ~rAz~) 
3 :i'~ " 

O(x[APl + XrAPe) 8KE 
8.;cl g 8xi (16a) 

F2=d/dt(~L~2) 8L 
8x2 

=d/dt(A2d:l) 3(XTAp2) 8KE2 
8x2 g 8x2 

(16b) 

where K E =  l/2d%rAld'l + I/2XTAz& and KE.2= 
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l/2a? rA2~. 

By using the kinematic relations among ~,  :/,~. 

and ,;/:> 

3,i'/c~Ah=ce and 3 ~ / 3 ~ 2 = [ ~  ~] (17) 

(16a) and (16b) can be rewritten as 

F t - d /  dt (AlCk~ + ar A.~:k ) 

c? (xrAp,  + x 'Ae~)  
3x~ -g - ~?KE / 3x~ 

(18a) 

3(x~A~) 
3x.~ g 

(18b) 

F~=d/d t (A~: i ' )  

- 3KE2/3x~ 

Taking time derivatives of the right sides of 
(18a) and (18b), we have 

F~=aTA~y 4 A~y~ + A~d~ + c~rA.~ . 
T T 

+ d rA~ J: ~?x~ g 

- ~ ? K E / c ~ x ~  (19a) 

F e = A ~ 2  + A.~.i: 3(xrAp~) 
&z'e g 

- ~KE.~/3.:c~ (19b) 

Using the relation 55--~5:'~+ 5(,_,+ d'J'l, which 

is shown in Section 2, (19a) and (19b) are 

combined in matrix form : 

I q = I  ~ A ~ +  A~ ~ l [ x ~ l  + [ ; : : i 1 .  
F~ A2a A2 .~  

(20) 

where F~rl--SA,zda~l+Alxl+ (JA2+ aTA2) i" 
C)(;cTAp1 + 3crApz) 

3xl g - ~ K E / & c ' I ,  and /~;,~2 

A2dd: t+A~2 3(xTAe2)-g--3KE2/3x2.  
8x2 

The corresponding joint  torques for each 

manipulator  can be calculated as : 

0 T ~ 
TO = J 1  /~1 (21a) 
r~ =~ (21 b) 

It can be seen from (20) and (21) that each arm" 

s joint  torques for the current motion are not only 

dependent upon its own motion, but also upon 

the other arm's motion. This dynamic interaction 

between the local arms is clearly represented by 

the dynamic equations based on the Cartesian 

space dynamic model. When there is an external 

contacting force at the HAND of the manipula- 

tor, -F~x t ,  extra joint  torques are," required to 

resist the static force for each arm, and the total 

joint  torque for each arm is given as : 

0 T r~-- J~ (F~ + ]-'-~F~,t) (22a) 

rf - ~  (F2 + b ~ t )  (22b) 

where / ' = [ p /  0i]. 

4. Dynamic Resolution of Redundancy 

Here, we will introduce a new concept of the 

task (a desired acceleration) distribution to each 

local arm according to its dynamic characteristics 

which are abstracted by the Cartesian Force 

Ellipsoid (C. F. E) and Cartesian Acceleration 

Ellipsoid (C. A. E). 

4.1 Capability of generating cartesian force 
The limited joint  torque range can be mapped 

into a feasible range of Cartesian force. From the 

Principle o f  Virtual Work, we have the relation 

between the joint  torque, r, and the Cartesian 

force, F ,  i. e., r j T F .  The inverse mapping of 

(J'~ F 2, gives the Cartesian force this relation, r 

range which can be generated by the limited joint  

torque range. 

The joint  torque ranges of each manipulator,  the 

B-ARM and the F - A R M ,  are represented as 

rb,rnin ~ "(b ~ rb,max, "g'f .min ~ 7f f "_~ r f  ,max. 

Using the dynamic Eq. (20) with the current joint  

velocities and angles, new joint  torque ranges 

which can be used to generate the Cartesian 

acceleration are obtained : 

r _ or r y r<mi,~-~ <- fb <- b,,,,ax J1 nrl, 
o ~r F < . o r r F 

r f , m i n - -  J l  +nr2 ~ f - ~ - T f , m a x - - -  J f  nr2. 

To obtain the feasible force range: through the 

inverse mapping, a normalized torque, r*, is 

defined and denoted by 

r * =  I;V~ (23) 

where a weighting matrix, W = d i a 9 [ l / ~ , ~ m ~ l  

R ~ w'ith fi.~imi~=mi~l(] f i  . . . .  [" ]r,.m,~l)" The 

z ( jr)+ is the generalized inverse of" j r .  
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normalized torque range (hyper-cube) can be 

approximated as a hyper-sphere (refer to Fig. 2) 

such that the al lowable torque range is represent- 

ed as [I r*]l < 1. Now, the corresponding Cartesian 

force range through the mapping, r* (~Y~i'~ '>~+ F* ,  

can be represented as a Cartesian Force Ellip- 

s o i d :  

Definit ion : Cartesian Force Ellipsoid (C. F. E) 

A hyper-el l ipsoid which represents the feasible 

range of Cartesian force within the allowable 

torque range, i. e., the capability of generating 
Cartesian force. 

II ~ * l l  2 = ~* ~* 

- ( w ~ ) ~ ( w ~ )  ( < ~ = / r F * )  
=F*~jWT( jW~)TF*<_I  (24) 

Definit ion : Realizable Cartesian Force Sub- 

space derived from JW T, ]~F (JW T) 

RF(JW r) _ ~ R ( F * )  such  tha t  V F * ~ R F  
( JWD,  ~ r* l r*= ( ]W ~) ~F* 

Def in i t ion  : Unrealizable Cartesian Force Sub- 

space derived from JW r, R ~ ( J W  r) 

RF~(JWr)~R(F  *) such that V F * ~ R ~  
( /WT),  ~] r * l r * =  (JW r) TF* 

Furthermore, Rv(JW ~) ( / R b ( J W  r) =~b and /?F 

( Iw~)  + • ~ ~ R~.(J~ ) : R ( F * ) .  

~b ~b 'Tb 

,I; b .0J1TFn Wl 

FI* 

k l ) \  
IIF *11 = 1 Y 

~lzU i2 

L.C .A.E 2 F2* 

From "~ f 

Fig. 2 Task distribution through C.F.E and L.C.A.E 
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With the Jacobian matrices and weighting 

matrices of each arm (0j, and W~ for the B-ARM, 

0jz and W2 for the F - A R M ) ,  the C. F. E for the 

B-ARM, C. F. E~, and the C. F. E for the F 

ARM, C. F. E> are defined as follows : 

C.F.E~ : F~*TUIK2U~TF~*<I (25a) 

where [~fl--dia,q[xH x~2 "'" x~,] (the inverse of 

non-zero singular values of ~ and U.e= [u~ 

u= ' "  u~s] (the left-singular vectors correspond- 

ing to K~). 

Note that the coeffcient matrix of  the C.F.E, J W  r 

(JW T) ~, can be simply repressnted by U,Ig.e~ r, 

where K2 clia,q[x2t x~ "'" x'~] (Lee and Lee, 

1990). 

4.2 Efficiency of generating cartesian 
acceleration 

The dynamic equations of  the decomposed 

-redundant  manipulator,  (20), represent the 

required Cartesian forces, tq  and F2, for the 

current acceleration, ~:t and 2.> Consider now 

how the desired acceleration, 5rid, can be generat- 

ed by the Cartesian forces,/'3" and F2* residing in 

the realizable Cartesian force subspaces. Since the 

acceleration at the hand is represented as 2 . -  c~2.~ 

+ L42+ &o/',, the desired acceleration, 2.a can be 

achieved by the accelerations of local manipula- 

tors, 

�9 ~-d = a2.1 + 2.2 (26) 

where :~-- 2.a-- d~:kl. 

Note that the acceleration can be generated 

only by the tbrce which resides in the realizable 

Cartesian force subspace. Therefore, the accelera- 

tions, 2.t and 2"2, need to be described in terms of 

Cartesian forces Fj* and F,* using (20). 

Definition : Interaction Cartesian Force Sub- 

space, R[ ,N 

The Cartesian force subspace in which interac- 

tions between two local arms exist such that R/-~ 

= RF (oj~ l/V r) (~ RF (F-  I~ 
Lemma 1. The set of basis vectors mU of R~ u 

RE (oj~ W r) (~ RF (['-mJsl~T), can be obtained 

by mU=I~U•  ~U• • where ~U a n d - r U  are 

respectively the set of basis vectors of RF (~ W1 r) 

and RF (F mJ~W~), and U • represents the set of 

basis vectors for the orthogonal complement of 

the subspace spanned by U. 
P r o o f  : S i n c e  R F (  - J o  7 r  F J i l l ,  2 )  = [R~" 

( F  l~177 we have 

R~ ('7, W,') n R~, ( v  l~ ~V) = [R~ ('7, wff) -~]~ 
(h [ RF ( F-t~ T) • � 9  [ RF (o j ,  Wit) : + R F 
( V-- :oI:W.D ~ ] �9 
where k represents the orthogona[ complement 

of the corresponding subspace. 

Re(~ B~) and R F ( F  mJjl/I~T) are spanned 
respectively by ~ U and sU, and, consequently, RE 

(~ [Vi ~) • + [~r (F  wJ.~V2~) x is spanned by [~ U • 

/U•  Therefore, [Rr  (~ [~4 r) ~ + RF ( F  t~ 
LI• is spanned by [~U • zu• (Q.E.D) 

Note that only the force component which 

resides in the interaction Cartesian force subspace 

contributes to the dynamic interaction between 

the local arms. Therefore, before multiplying the 

[ a r A 2 a + A ,  arA2] to both sides of inverse of 
k A2a A2 J 

(20) to represent the accelerations in terms of 

Cartesian forces, arA22.2, the /~ component re- 

presenting the interaction force, is projected onto 

the interaction subspace, RF m " likewise Azff2.~, 

the F2 component representing the interaction 

force, is transformed to the elbow and projected 

onto the interaction subspace, and is transformed 

back to the hand. 

Consequently, the accelerations which can be 

generated by the forces residing in the realizable 

Cartesian force subspaces are represented by 

h,,]r 7 ] (27) 
. /Z21 h22J L F2 J 

r:"' hd where F l * = _ ~ - / ~ m ,  _h~* = F 2 -  Fn,-2, Lh21 h=J 
- ! 

F &,TA2&, d- d l  
P'uarA'e] - and the: projection 

= LFtSNF~A2ce A2 J ' 

operator PiN INu(IN[fT 1,~_])-IlN{TT 
Equation (27) is rewritten to represent the 

Cartesian acceleration generated by the B-ARM 
and by the F ARM individually : 

[/~]*] (28a) 2.1-- []Zu h12] F~* 

I rF '* l  
~ = [h2, z~:u LFZJ (28b) 



650 Jang Myung Lee 

Substituting (28a) and (28b) into j ~ c / = f f 5 5 1  i I 552, 

- ah12 Jr- hzz~ 1, . 

Eq. (29) represents the Cartesian acceleration at 

the hand generated by F~* and Fz* which are the 

Cartesian forces to be 

Cartesian acceleration 

que range. 

Generally,  the local 

used for the generation of 

within the al lowable tor- 

arms do not have enough 

degrees of freedom to cover the task space. The 

following relationships exist between the rank of 

0j~ ~ r  and ~  and the d imension of the task 

space : 

r (o j ,  Wf ) ,  r (~ < m and 

r (~ W~ r) + r (~  --  n > m (30a) 

where the local arms are assumed to be non 

singular,  m is the d imension of task space and re 

is the number  of joints  in the decomposed-redun-  

dant  manipulator .  

The dimension of the interaction Cartesian 

force subspace can also be obtained by 

d im(R~  ~') d im(RF (~ WI T) ) 
+ dim ( RF (~ ~T) ) __ m (30b) 

where r (~ is the same as r (F-l~ by 
Sylvester's inequality since f ' -~ has full rank. 

Note that dim (R~ N) > - n - r n  unless the local 

arms are singular,  and that d im(R~  N) > n - m  
when the decomposed- redundant  manipula tor  is 

singular. Eq. (30) implies that among the basis 

vectors of Rr(~ l/[~r), only the ones which do 

not reside in the interaction Cartesian force sub- 

space, Rp ~', directly contr ibute to the acceleration 

at the hand. 

T h e o r e m  1 : _h~*, the force supplied by the B 

ARM and residing in R]. ~' cannot  generate any 

acceleration by itself at the hand. 

P r o o f :  The acceleration generated by the B 

- A R M  results in acceleration at the base of the F 

- A R M .  When FI* resides in /r , the positive 

acceleration of the elbow is absorbed as the 

negative acceleration of the F - A R M  if the F 

ARM does not provide the opposite force to 

resist it. Therefore, b~* by itself does not contrib- 

ute to the acceleration at the hand. (Q. E. D) 

Each arm's direct efficiency of generating Car- 

tesian acceleration can be respectively defined 

through the mapping,  FI* ~h'-UJ22 5~ and 

cehtz F h22 
F 2  ~ 55 (refer to Eq. (29)).  

D e f i n i t i o n  : Direct Cartesian Acceleration Ellip- 

soid (DCAE)  

A hyper ellipsoid which represents the feasible 

acceleration range at the hand corresponding to 

the unit  norm Cartesian force which resides in the 

realizable Cartesian force subspace, i. e., the 

direct effic#ncy o f  generating Cartesian acceler- 
ation. 

The D C A E  for the B-ARM,  D. C. A. E 1, and 

for the F - A R M ,  D. C. A. Ez, are defined as 

D.C.A.Ea : ~T C~s 1 = 0  

where C~-{  (ahn + hz~) (ahn + h2x) T}-~ 

D.C.A .E2  : 5~ ~ C ~ -  1 = 0  
where Cz { (ah12+ hz2) (e~h12+h22) T} 1. 

Since the unit  force vector on the C. F. E is 

uniquely mapped onto a vector on the D. C. A. E, 

a feasible acceleration vector on the D. C. A. E is 

defined as a vector mapped from a principal  axis 

o fC .  F. E, i. e., ul l  of  C. F. E1 and u2i of C. F. E 2. 

D e f i n i t i o n  : Direct  Feas ib l e  Acce l e r a t i on  

Vectors, o~i~ ~ji 

Direct Feasible Acceleration Vectors of B- 

ARM : 0-~i~1,-(ahH+h21) ul~, i = l  to (m f )  
Direct Feasible Acceleration Vectors of F 

A R M :  0-zdbzi=(ceh12+hzz)U2i, i = l  to f .  

D e f i n i t i o n  : Direct Feasible Acceleration Vector 

Sets, Zl ~ and ~'2 ~ ,  

where s O"12 " ' '  O ' t ( m - f ) ] ,  

Z 2 -  diag[ 0-.~t 0-zz "'" ~2z~, 
~ =  ICn ~12 "'" ~bll~-i)~ and ~.2=[~b21 r "'" 

The desired acceleration 55a can be achieved by 

using ~ and ~z since rank l  ~Yl, ~ is equal to 

rank [ ~t, ~z, 5~a] unless dim (R~ F) > n -  m. 

4.3  H i e r a r c h i c a l  t a s k  d i s t r i b u t i o n  

The highest priority of the F - A R M  is effective 

for an instant and provides a unique solut ion for 

the task distr ibution.  However, it may drive the F 

ARM to a singular configurat ion by heavy 

loads, since it has a relatively small workspace. 
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Further, the joint torques are functions of the 

joint velocities and manipulator configurations, 

which are highly nonlinear, so that if the task 

distribution is done solely based on the direct 

efficiency of generating Cartesian acceleration, it 

might be the case that excessive joint torques are 

required for the F - A R M  

4.3.1 Local efficiency of generating car- 
tesian acceleration 

As 'shown in (27), hu and h2e represent how 

efficiently the local accelerations, 5~ and 552, are 

generated respectively by hi* and /~z*- Therefore, 

each arm's efficiency in generating ('artesian 

acceleration at the hand can be respectively defin- 
, dlt:l tl~ 

ed throughthe mapping, F~ - 57 and/~7 �9 .i7. 

Definition : Local Cartesian Acceleration Ellip- 

soid (LCAE) 

A hyper-ellipsoid which represents the feasible 

acceleration range at the hand corresponding to 

the unit norm Cartesian force, provided by each 

local arm without considering the interactions, i. 

e., the local efficien O' of  generating ('artesian 
acceleration. 

The LCAE for the B-ARM, L.C.A.Et, and for 

the F-ARM, L.C.A.E2, are defined as 

L.C.A.Ea : 5~ r ClX - -  1 = 0  

where Cl = (cdzHh[la r) -1 

L .C.A.E2:  57r C2~ 1=0 

where C2= (h22hr2) 1 

Definit ion : Local Feasible Accelerat ion 

Vectors, aj,r 

Local Feasible Acceleration Vectors of B 

-ARM : dlir i=1  to b 
Local Feasible Acceleration Vectors of F 

-ARM : a24b2i=h22u>., i=1  to f .  

Definition : Local Feasible Acceleration Vector 

Sets, V~ grl and Z~ ~ ,  

where Z~=dia,q[a~a~2.. .d~],  5?2=diag 

[ a,ela2:c" a~], 
q-q=: [r162162 and ~2= [r162 

4.3.2 Dynamic task distribution 
The task represented by ~d can now be 

optimally distributed to each local feasible accel- 

eration vector, r j = l  or 2, according to the 

capability and efficiency of the manipulator in 

generating (ji. The interaction effects, hl,eF~ on 

~1 and h2~F~* on 5(2, with other global require- 

ments can be incorporated into the task distribu- 

tion by the factor, 7, which governs the task 

-sharing between the local arms. 

Task l)istribution Criteria 

CI : The task is decomposed into individual 

(unit) local feasible acceleration vectors propor- 

tional to their di,xu values, where xji represents 

the capability of generating Cartesian force, uji, 
and c9~ represents the local efficiency of generat- 

ing Cartesian acceleration, (j,, by us~. 

C2 : A task distribution factor, 7, is defined so 

that the task-sharing between two local arms is 

adjusted to the global task requirements, for 

example, joint torque limit avoidance and singu- 

larity avoidance. 

The task distribution can be summarized as the 

minimization of 

-- = ( ~ l i  ~ X l i  Z i = 1  0"2z ~ X 2 i  

(31) 

subject to 

57,,-- ~ K ,  + ~K~ (32) 

where 0<_7<_1, K~=[kuk~z.-.k~,] r, and Kz= 

[ k._,~k=.-./c~] ~. 
This task distribution procedure is illustrated in 

Fig. 2. 

Calculation of K1, and K,e 

From (32), we have 

57d= ~ K  (33) 

where ~ a ~ R  ~• g r= [gq  : g43~:R'• and 

K =  [K,~: Kf]  ~R(b+*)• 
The performance function, (31) can be refor- 

mulated as 

G= I /2[ Ka ~ ~f]d iagI  wv"u,v 

w,,+,"" u,~+s] [ ~ [ ]  i /2KrWK (34) 

1 -  T where w , .= -7  ........... ~ for i = l ,  �9 b ; w~+~= 
t d i i "  Xll) "" 

7 a2 for i = b + l ,  b + f .  
(o;~i �9 x2~) " ' "  

To obtain K such that rain G(K)  subject to 
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~ - -  gK,  let us define the Lagrangian L ( K )  as 

follows (Chang, 1986) : 

L (K) = A r F  (K) + g (K) (35) 

where F ( K )  ~d grK and A is an m •  La- 

grangian multiplier. The condition for the 

extremum, c)L/cOK=O, results in 

grr/~= W K. (36) 

Assuming that we can select m linearly in- 

dependent rows from //2"r, (36) can be divided 

into 

gr~r.a Wmt( (37a) 

~'TA WInK (37b) 

where grmr~R~• and i~r~R(~+/-")• are for- 

med respectively by m linearly independent rows 

of grr and by the remaining ( b + f - m )  rows of 

W. 
Determining ~ from (37a) and plugging into 

(37b), we have 

~m~ ( ~/~) -.1W,,K-- lg,,,K (38) 

Now, K can be uniquely determined by (33) and 

(38). 

5. Elbow Control of a Decomposed 
- - R e d u n d a n t  Manipulator  

Task distribution is not feasible when the 

principal axes of LCAE's (the feasible accel- 

eration vectors) cannot cover the whole task 

space. This is the case when the decomposed 

-redundant manipulator becomes singular, i. e., 

dim(R[~') > n - r e .  This might be avoided by 

adding some acceleration s to ~/(~ and 

-~%zbow to ~K2 without affecting the Cartesian 

acceleration ~ (  gYlKl+ ~J('e) at the hand, as it 

is well described for kinematic control of the 

elbow (Lee and Lee, 1990). However, this 

dynamic control of the elbow cannot guarantee 

the avoidance of kinematic singularities. To 

resolve this situation globally, kinematic control 

of the elbow can be done using the intersection 

subspace of the realizable Cartesian velocity sub- 

space of the B-ARM, R2(~ a and the realiza- 

ble Cartesian velocity subspace of the F-ARM,/v '  

?;-(~ the hand (Lee and Lee, 1990). That is, 

if the B ARM generates a certain motion ghana at 

the hand, then the F ARM generates Wand to 

compensate athe B-ARM motion such that the 

velocity at the hand is not affected by the elbow 

control. 

Two objectives can be considered in the 

kinematic control of the elbow to achieve efficient 

dynamic task distribution : 

1. To maximize the dimension of C. F. E's. 

2. To make the shape of LCAE's as round as 

possible to make the manipulator versatile and 

flexible for various tasks. 

Here, we place emphasis on the first objective. 

in fiact, making the shape of LCAE as round as 

possible in the workspace has been discussed as a 

design criterion for robotic manipulators. 

Note that since the weighting matrix W is a 

positive diagonal matrix, the realizable Cartesian 

force subspace, lqu (jWT), is the same as the the 

realizable Cartesian velocity subspace, Rx-(J), 

and also the dimension of the C. F. E defined by 

J W  r is the same as the dimension of 

manipulability ellipsoid defined by ] .  Therefore, 

the kinematic performance function TOMM (Lee 

and Lee, 1988), which represents the suitability of 

manipulator configuration for a given task in 

terms of the efficiency of motion generation and 

the resistivity of static force, is suitable for elbow 

control. This elbow control is well described 

analytically in (Lee and Lee, 1990). 

This kinematic control of the elbow can be 

done in parallel with the task execution when the 

desired acceleration is zero, i. e., at the constant 

velocity phase, where the dynamic characteristics 

are not dominant factors for the optimal task 

execution. In addition to the performance 

improvement for the task at the hand, elbow 

control can be also utilized for a certain subtask 

specified at the elbow such as avoiding obstacles 

:~ From (4a) and (4c), oz0?l--~ and Rx,(~ is 
defined as follows : 
Rx(~ oR(o?) such that V~RX(~'J~,), 
q d~,l.i' 'Tbdb 

4 From (4a) and (4c), 0?2 ~ and /e2(~ is 
defined as follows : 
R2(~163 such that V0?~R2(~  
-~ d,107 % d ,  
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during the task execution. 

6. Simulation 

We select a 4-revolute-joint redundant manip- 

ulator with a planar workspace. The elbow is 

predetermined at the end of the second link. To 

show the effectiveness of the task distribution 

scheme developed in this paper, we display the 

configuration of the manipulator with the needed 

torque of each joint. The joint torque ~alues are 

displayed to show the effect of the task distribu- 

tion and elbow control. For simplicity, F,,~ and 

b~2  are assumed to be negligible. 

As discussed in Sec. 4, the task distribution 

factor 7" can be adjusted to avoid possible joint 

torque limits of each manipulator which cannot 

be avoided by the optimal task distribution with 

a fixed 7. To show the effect, we demonstrate two 

different cases of task executions : 7 =  t (intend- 

ing that the desired acceleration is generated by 

only the B-ARM),  and 7--0.1 (intending that 

the desired acceleration is generated mostly by the 

F-ARM).  

The workspace of the F-ARM is small such 

that there exisls the possiblity that the F-ARM is 

confronted with a boundary singularity when it is 

the primary arm used for the task execution (for 

example, 7"=0.1). This situation is indicated by 

the value of TOMM. To avoid this situation 

globally, we use elbow control in the beginning of 

each task segment to make TOMM<0.3.  

Simulation Environment 

1. A redundant manipulator which has 4 links 

(/1--/'2=1.2m and /3=A=0.6m) is selected and 

each ioint- torque-l imit  is given as ra.m~,,=--100 

N "  ~z, r 2 , m i n = - I 0 0 N "  ~ ,  ~ , ~ , , , - - - 3 0 N .  ~n, 

r4.mi,,:=-30N" m, rl,~nax=lOON " rrz, r2.max 100 

N "  m, r3.m~=30N " m, and r4 ..... = 3 0 N .  m. 
2. All the mass of each link is assumed to be 

located at the distal end of each link as a cubic 

shape such that the inertia matrix L - I .  The mass 

values, are given as m~ = 10Kq, T]'z2--N~q, ~13--2. 
5I@ and ~VI~Z4= 1.2/@. 

3. The given task is composed of two task 

segments, where a task segment is defined as a 

basic unit of task which requires the same motion 

and static force directions : 

7"S~: Move From (I.0, 0.0) To (1.5, 0.0) with 

an acceleration of 

x d = [  1070 2 j m / s e c  while x- posi t ion< 1.25, 

107 
and .ya= ~ ]m/sc~c- otherwise. 

o J 

TS2 : Move From (I.5, 0.0) To (2.0, --0.1) 

with an acceleration of 

r 50/~/26 q 
~r = L-  10/,/2-6J rn/sec'2 while ,:-position < 1. 

r -- 50/,/263 , 2 
75 and . f , - - [  10/,/~6 ] m / s e c  otherwise. 

4. A static force of 10N is required in the 

direction normal to the direction of motion for 

each task segment. 

5. Initial location of the elbow is given as(0.5, 

0.2). 

6. Considering the motion and static force 

requ i rements  of the task, the des i red  

manipulability ellipsoid is defined as the princi- 

pal axes and length along the axes, {x~d aul, x2d 
uu2}, and assigned to the F-ARM (Lee and Lee, 

1988). The values are given as follows : 

x~,~= 1.0, and x2a==0.4 always, 
au~= [ 1.0 0] r, and du~-- [0 1.0] 7' for the task 

segment 1, 

du~ = [5/,/2--6 __ I/  /~U66~ r and au:,= [I/~/26 5/ 

,f261 v for the task segment 2. 

dl~l 1 is given as the desired motion direction, and 

au2 is given as the static force direction. 

The desired manipulability ellipsoid is pro- 

vided to guide elbow control by TOMM, which is 

defined as the discrepancy between the desired 

m a n i p u l a b i l i t y  e l l ipso id  and an actual  

manipulability ellipsoid. 

Control Scheme 

1. The desired acceleration, ~d(=-Ya--~ck~) 

is distributed to the B-ARM and the F-ARM 

based on the task distribution criteria with a fixed 

7 (refer to (31) and (32)). 

2. To see the effect of changing 7 (changing 

the task share of each arm) on aw~iding the joint 

torque limits, we first demonstrate two task execu- 
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tion examples with different values of 7- 

3. To follow global task requirements, such as 

avoiding singularites and minimizing power con- 

sumption, the elbow control (to reshape and 

reorient the manipulability ellipsoid) is done in 

the beginning of each task segment until TOMM 

<0.3. Elbow control is demonstrated for only the 

case of task execution (with 7=0.1) in which the 

F ARM performs the majority of the task. 

Resuhs of Simulation 

1. The task is suitably distributed to each arm, 

as can be seen by comparing the torque value for 

each joint and its limit. 

2. As shown by Figs. 3 and 4 by reducing the 

load to the B ARM (decreasing 7), the situation 

of the B-ARM reaching joint  torque limits even 

though the load is well distributed to each joint-  

is resolved. 

3. As it is demonstrated by Fig. 4, the ampli- 

tudes of joint torques are rapidly increasing when 

the configuration of the F-ARM becomes close to 

singular. There might be two reasons for the 

excessive joint torques : (a) the F-ARM has low 

I 
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efficiency for generating Cartesian acceleration, 

and (b) the configuration of F -ARM is poor for 

resisting static forces normal to the surface. 

The values of TOMM indicate this situation by 

a rapid increase as shown in Fig. 4(b).  

4. This situation is resolved globally by the 

kinematic control of the elbow in the beginning of 

the second task segment, which guides the F 

-AR/V[ to have a good configuration for the next 

task segment. This is demonstrated by Fig. 5. 

Note Ihat two configurations are shown for the 

hand location (1.5, 0) : one configuration before 

elbow control, and the other after elbow control. 

5. Using the F-ARM primarily allows the task 

to be executed with low power consumption and 

with high position control accuracy (Lee and 

Lee, 1990). Comparing Fig. 3 (using only the B 

-ARM) and Fig. 5 (using the F-ARM primarily 

with the elbow control in the beginning of the 

second task segment), it is clear that using the F 

-ARM for high-frequency motion is good for 

saving energy. 
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7. C o n c l u s i o n  

Dynamic  character is t ics  o f  a decomposed  

- r e d u n d a n t  m a n i p u l a t o r  have been utilized for 

the efficient task execution.  T h a t  is, a task re- 

presented as a desired Car tes ian  accelera t ion  is 

d i s t r ibu ted  to local arms fo rming  a decomposed  

- r e d u n d a n t  m a n i p u l a t o r  depend ing  on thei r  local 

dynamic  character is t ics .  T h r o u g h  c o o r d i n a t i o n  

between the local arms, the avo idance  of  j o in t  

t o rque  limits and  the reduct ion  of  power  con-  

sumpt ion  are achieved.  

It was also shown  that  ass igning  more  of  the 

task to the F - A R M  is effective for bo th  min imiza-  

t ion of  power  c o n s u m p t i o n  and  accurate  pos i t ion  

con t ro l  (Lee and  Lee, 1990). However ,  the effects 

of  heavy load to the F A R M ,  which  has relat ively 

small  workspace,  may drive the F A R M  near  to 

s ingular  conf igura t ions  where  the required j o in t  
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torques are very large. The dynamic characteris- 

tics (C. F. E and C. A. E) of the manipulator do 

not directly represent kinematic performance, for 

example, manipulabil i ty and static force resis- 

tivity. Therefore, kinematic control of the elbow 

can be adopted to adjust the configuration of the 

F - A R M  to be versatile and suitable for a given 

task using TOMM as a performance index. It is 

suitable to control the elbow kinematically during 

the constant velocity phase or during the low 

acceleration phase, in which joint  torque limits 

and power consumption are not dominant factors 

to be considered for efficient task execution. The 

elbow control can also be used to execute a 

subtask specified at the elbow, for example, obsta- 

cle avoidance. 

In fact, this scheme can be used as a general 

tool 1:o achieve cooperative control of macro/  

micro manipulator  system (Sharon et al., 1988), 

veh ic le /man ipu la to r  system (Yoerger  and 

Slotine, 1987), or a reconfigurabte manipulator  

systems (a serially linked manipulator  system in 

which the F - A R M  can be dynamically replaced 

for a specific task). The multiple task point con- 

trol scheme is a promising method for optimal 

control of redundant robot arms and confers 

many advantages in real world applications. 

References  

Book, W. J., 1985 "New Concept in Light- 

weight Arms," The 2nd Int. Symp. o f  Robotics 

Research, MIT press, pp. 403--405 

Chang, P. H., 1986 "A Closed Form Solution 

for the Control of Manipulators with Kinematic 

Redundancy," Proc. IEEE Int, Conf  Robotics 

and Automation, pp. 9--14 

Horak, D.T., 1984 "A Simplified Modeling and 

C o m p u t a t i o n a l  Scheme for M a n i p u l a t o r  

Dynamics," Journal o f  Dynamic Systems, Mea- 

surement and Control, Vol. 106, pp, 350--352 

Hollerbach, J. and Suh, K. C., 1987 "Local 

Versus. Global  Torque Optimization of Redun- 

dant Manipulators," Proc. Int. Con f  on Robotics 

and Automation, Raleigh, North Carolina, pp. 

619~624 
Khatib, O., 1987 "Unified Approach for 

Motion and Force Control of Robot Manipula- 

tors : The Operational Space Formulation," 

1EEE Jour. o f  Robotics and Automation, Vol. 

RA-3,  No. 1, pp. 43--53 

Klema, V. C. and Laub, A. J., 1980 "The 

Singular Value Decomposition : Its Computat ion 

and Some Applications," IEEE Trans. on Auto- 

matic Control, vol. ac+25, No. 2. pp. 164--176 

Lee, Sukhan and Lee, ,lang M. 1988 "Task 

-Oriented Dual -Arm Manipulabil i ty and Its 

Application to Configuration Optimization," 

Proc. 27th IEEE Conf. on Decision and Control, 

Austin, TX 

Lee, Sukhan and Lee, Jang M., 1990 "Multiple 

Task Point Control of a Redundant Manipula- 

tor," Proc. IEEE Int. Conf. Robotics and Auto- 

mation, pp. 988--993 

Lunde, E., Egeland, O. and Balchen, J. G., 1987 

"'Dynamic Control of Kinematically Redundant 

Robotic Manipulators," Modeling, IdentOqcation 

and Control, Vol. 8, No. 3, pp. 159--174 

El, Z. and Sastry, S. 1988 "Task Oriented 

Optimal Grasping by Multifingered Robot  

Hands," Proc. IEEE Int. Conf. on ,Robotics and 

Automation, Raleigh, NC, pp. 389--394 

Liegeois, A., 1977 "Automatic Supervisory 

Control for the Configuration and Behavior of 

Multibody Mechanisms," IEEE Trans. On Sys- 

tems. Mall, and Cybernetics, Vol. SMC 7, No. 

12, pp. 868--871 

Maciejewski, A. A. and Klein, C. A., 1985 

"Obstacle Avoidance for Kinematically Redun- 

dant Manipulator  in Dynamically Varying Envi- 

ronments," The Int. Jour. o f  Robotics Research, 

Vol. 4, No. 3, pp. 109--117 

Nakamura, Y. and Hanafusa, H., 1987 "Opti- 

mal Redundancy Control of Robot Manipula- 

tors+" The Int. Jour. o f  Robotics Research, Vol. 

6, No. 1 

Sharon, A., Hogan, N. and Hardt, D. E., 1988 

"High Bandwidth Force Regulation And Inertia 

Reduction Using a Macro/Micro Manipulator  

System," Proc. 1EEE Int. Uonf  on Robotics and 

Automation, pp. 126-- 132 

Tzafestas, S. et al., 1988 "Robot Model Refer- 

ence Adaptive Control Through Lower /Upper  

Part Dynamic Decoupling," Journal o f  lntelli- 



658 Jang Myung Lee 

gent and Robotic Systems, No. 1, pp. 163--184 

Whitney, D. E., 1969 "Resolved Motion Rate 

Control of Manipulators and Human Prosthesis," 

IEEE Trans. Man-Machine Syst., Vol. MMS 

-10, pp. 47--53 

Yoshikawa, T, "Analysis and Control of 

Robot Manipulators with Redundancy," The 1st 

Int. Syrup. o f  Robotics Research, MIT press, pp. 

735-- 748 

Yoerger, D. and Slotine, J., 1987 "Task 

Resolved Motion Control of Vehicle-Manipula- 

tor System," Int. Jour. o f  Robotics Automation, 
vol. 2, no. 3, pp. 144--150 


